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Basic points underlying the geometrization of continuum defects are discussed. 
Following an analogy with gravitational gauge theories, a metric-torsion gauge 
theory of continusm line defects is developed. Gauge-invariant action integrals 
are constructed a~d their equations of motion are obtained. A Lagrangian 
containing curvature terms up to second power has constant-curvature solutions. 
In linear approximation these solutions correspond to line defects which form 
closed loops separately. 

1. I N T R O D U C T I O N  

The geometrization of a physical theory, i.e., expressing it in a differen- 
tial geometric form, requires the following (Schultz, 1985): 

(i) Identification of  differential geometric concepts with certain physi- 
cally measurable quantities. 

(ii) Specification of  how the metric, curvature, and torsion of  the space 
corresponding to the underlying continuum are generated or determined 
by the physical objects of  the theory. 

(iii) Specification of how physical objects (particles, defects, etc.) 
behave in this mathematical  space. 

Up to now, in the continuum mechanics of  defects much valuable work 
concerning the first and the second points has been done (Kr6ner, 1981; 
Kl6man, 1983; and references given there), but the third point needs further 
study. 

The basic geometric identifications made in the continuum mechanics 
of  defects are that: 

(i) The underlying continuum used for the description of physical 
phenomena  related to defects is a differentiable manifold (body manifold). 
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(ii) The dislocation and disclination line densities are identified with 
the torsion and curvature of that manifold, respectively, and the metric is 
given by gij = ~ij-2eo, where the Kronecker symbols 8~ and e 0 are the 
metric components of  the defect-free body manifold and the components 
of  strain tensor, respectively. 

These identifications are valid only in three dimensions, i.e., for the 
statics of  defects. 

Following a close analogy with gravitational gauge theories, this paper 
investigates the third point stated above. After discussing the motivation 
for the study and giving the basic differential geometric notation used in 
the subsequent analyses, the differential geometric structure of the body 
manifold corresponding to various situations and a Lagrangian formulation 
of the program is given. The investigation is based on the two identifications 
stated above, and will be carried out in arbitrary dimension, to open the 
way to the dynamics of defects. Problems of this approach and some points 
for further investigation are mentioned. 

2. MOTIVATION AND NOTATION 

Gauge models of  defects in (dis)ordered media have been formulated 
for various fields of condensed matter physics, such as crystals and amor- 
phous solids (Dzyaloshinskii, 1981; Rivier and Duffy, 1982; Kadic and 
Edelen, 1983; Venkataraman and Sahoo, 1985; 1986; Kleinert, 1987; 
Trzesowski, 1987). At intermediate length scales these discrete systems are 
described within the continuum approach, which is the approach used in 
this paper. Such a contirluum theory of defects describes well only those 
phenomena which can be classified as large-scale phenomena. The gauge 
models of defects mentioned above are formulated in analogy with classical 
Yang-Mills theories. Perhaps it is not equally well known that gravitational 
theories, including the Einstein theory, are gauge theories of  a different kind. 

By a classical gauge theory is meant any physical theory which includes 
among its dynamical variables a connection on a principal G-bundle over 
a (fiat or curved) base manifold M. The structure group G is a Lie group 
often called a gauge group. A connection 1-form F on II: P-~ M describes 
a gauge configuration and a local section s: U ~ P ,  U c  M, I l o s = I d M ,  
defines a gauge, where P is the principal G-bundle, II is the projection 
map, and IdM is an identity transformation of M. The pullback of the 
connection ~o = s*F and curvature R = s ' l )  are called, respectively, the 
potential and field strength of the gauge configuration in the gauge s, where 
f~ is the covariant differentiation of F, f~ = DF (Trautman, 1984). 

The most important difference between Yang-Mills-type gauge models 
and gravitational gauge models is that the underlying bundle of the latter 
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is the bundle of  linear frames L(M) ,  which is a collection of all linear 
frames defined at each point of M. The structure group of  L ( M )  is G L ( m ) ,  

the general linear group in m dimensions. L ( M )  is "concrete"  and has 
more structure than the "abstract" bundles of  the other gauge theories. The 
additional structure is due to the soldering form 0, which upon covariant 
differentiation leads to torsion, | = DO. Since the vector bundle involved 
is the "most  natural" bundle associated with a manifold, gravitational gauge 
theories are the "most natural" gauge theories (Bergmann and Flaherty, 
1978; Trautman, 1982). 

By making use of the pullback map s*, the geometric structure of  the 
bundle can be mapped on M itself, that is, Cartan structure equations (we 
use the Einstein summation convention) 

R~- i i - -  i - -  k l n i  k - -  I = Do) j = do)j  ( la)  -t" O0 kj$_O.) j = ~ I K  jkl e ~ e  

T ~ = D e  i = de ~ + o ~ A e  j = �89 I ( lb)  

and their integrability conditions (Bianchi identities) 

D R j  = O, D T  i = R i j A e  j (2) 

i s * f ~ ,  T i i , ~ e ~ are also satisfied on M, where R j =  =s*O;, o J j = s  Fj ,  = s * O  i 

(d and A denote the exterior derivative and exterior multiplication, respec- 
tively). Under a change of local section associated with a gauge transforma- 
tion (a~)e  G L ( m ) ,  m being the dimension of  M, base and connection 
1-forms change according to 

e ' =  a~d j, a'kgO~. = O)'ka 5 + da~ (3) 
�9 . ! 

The corresponding changes of curvature and torsion 2-forms are a ' k R ~  = 
i k i i / k  �9 �9 �9 

R ka j and T = a k T ,  respectively (Kobayashl and Nomlzu, 1963). 
So far, there is no relation between connection and metric, i.e., they 

are taken as two independent fields describing the geometric structure. But, 
among all connections, the metric compatible connection that satisfies the 
metricity condition 

Dgi~ = d g i j  - g i k tO  k _ g j k t O  gi = 0 (4) 

is the "most physically reasonable" one. First, condition (4) means that 
parallel displacement, which is an operation to compare geometric objects 
defined at two distinct points of M, is an isometry. For example, the angle 
between two parallelly displaced vectors and their lengths remains 
unchanged. Second, condition (4) allows us to have locally Euclidean 
structure at each point of M. This is important, to know the degree of 
deviation from a flat structure at a point. Third, it will be clear in the 
following investigation that the metricity condition is the main geometric 
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property of  a continuum surviving after a plastic deformation. As empha- 
sized by Hehl et al. (1976), "the metricity postulate is an a posteriori 

constraint which reflects in a precise manner the results of  numerous 
experiments." I assume condition (4), which implies R,j = -Rji,  throughout 
this work. Thus, the geometric structure can be described by g and to, or 
equivalently, by g and torsion T. Because of condition (4), the number of 
independent field variables is 

m ( m + l )  m 2 ( m - 1 )  m ( m 2 + l )  

2 2 2 

The linear connection can be written as 
i ~ i  i to :=to :+% (5) 

where ~i to j is the torsion-free Levi-Civita connection determined through 
the equation d e i +  ~ ~Ae  j = O, and r~, which represents the non-Riemannian 
part of  to~, is called the contorsion 1-form. While the antisymmetric part 
of  z~- specifies torsion through the equation T i ~ J = r j A e ,  its symmetric part 
is important in the specification of  parallelly transported vector fields. In 
local (x i) coordinates, writing 

i i - i  to j = r kj d x  k, o~ j = {k~} dx  k 

i ~ ~ 'Jk  d x k ,  ,-Fi 1 T i  i =~.jk dxJA dx  k (T~g = - - T k j )  "rj 

and using condition (4) and formula (5), we have 

r i k j  i i = {kk}+ r j k  (6) 
where 

= ~ j  k l  = 5 g  I, g lk ,  j d- glj, k - -  g j~)  (7a) 
i 1 i i 

r jk = -- 5( T jk + T j  + Tkj ) (7b) 

(I use the abbreviation Ogo/Ox k =  g~,k). Working in an orthonormal basis 
e '~ =f '~  dx  i is easier and often more helpful when one looks for an 
operational interpretation of  quantities appearing in the formalism (hence- 
forth, Greek indices are used to denote noncoordinate indices). Since in 
an orthonormal basis g~t3 = 3.~, condition (4) gives o)~r =- tor  and by 
using formula (lb),  we obtain 

= %~, +~(f.t3a +f~ , .  + f * ~ )  (8) F otal3 1 

where f'~z~ , j a a = f ~ f a ( f i ,  j - f j , ~ )  is called the object of anholonomity, which 
measures the noncommutativity of the orthonormal basis, f'~ and f ~  are 
reciprocals of each ~ ~ = ~ j, f~ f ~  = 8 ~. Now that parallel trans- other, f ~ f j  i ~ i 

port of  an orthonormal basis is given by de ~ = - t o ~ A e  ~, toga represents 
the rotation of a parallelly transported orthonormal basis relative to the 



Continuum Line Defects I1  

given one. As is obvious from equation (8), this rotation consists of  two 
parts: one the Ricci rotation due to the object of  anholonomity, and one 
due to contorsion called the "added twist." That is, in an orthonormal basis, 
instead of  the metric, the base 1-forms play the role of independent degrees 
of  freedom. 

Finally, the Ricci 1-form Re, which is the only essential contraction 
of  the curvature 2-form, and the curvature scalar Q are defined as 

g ~  = i~R~t3, Q = i~R ~ = i~it3R t3~ (9) 

where is denotes inner product  operation with respect to e~, i~e ~ =  8t3~, 

and e~ is the dual basis of e% Symmetrization and antisymmetrization are 
denoted by ( . )  and [. ], respectively, and 6/jk stands for the totally anti- 
symmetric unit tensor with 6123 = 1. 

3. DEFECTS IN LINEAR ELASTICITY THEORY 

The only quantity that determines the physically observable internal 
stresses due to defects is the symmetric, divergence-free incompatibility 
tensor 

~i) = eikmejln emn, kl (10) 

(Kr6ner, 1981; Kosevich, 1980; K16man, 1980). In the case of small deforma- 
tions, which is the standard approximation of the linear elasticity theory, 
emn ='fl(mn),  t im,  being the deformation field. Dislocation and disclination 
line densities are defined to be 

a i j  = F, ikl[~lj, k (1 la) 

EIn kme ki t  1~ n \ 
Oij = j i mn,k t - -Ei  tOlj l - -2Ojl  O~ n) ,k  ( l l b )  

respectively. (u,)  is the displacement field, era, = u(,,,,) if and only if ~/= 0 
(St. Venant theorem). Given oz U and 0 U, definitions (11a) and (11b) are 
differential equations for unknown e,,,. In that case their integrability 
conditions (kinematic equations of defects) are 

k oij, i = O, c~ ,,,k = - - e J O 0  (12) 

These equations express the fact that disclination lines cannot end within 
body, and dislocation lines can end on disclination lines. Now using 
equations (10) and (11), ~ can be written in terms of defects as 

T]i j : O( ij) "~" Eikrnoljm,k "~ Ejkmaim,k (13) 

This form of  ~ clearly shows the contribution of defects to the incompati- 
bility, which is a measure of the deviation from the defect-free case. 
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The basic mathematical problem of  the theory of internal stresses 
consists in calculating stress and strain in the body, given the incompatibility 
tensor 7, i.e., given the defects. The basic equations to be solved are the 
force and moment equilibrium conditions o-j,~; --0, ~,~ =--ejkmo'km and the 
constitutive equations of  the media (tr U and G0 denote stress and moment 
stress tensors, respectively). 

The above brief review of  the theory of  defects is the static case. 
Currents of  defects and interactions of defects are not considered. All the 
equations considered above are local in the sense that they are not covariant 
under coordinate changes, i.e., they are coordinate dependent. Their gen- 
eralization will be given within the differential geometric description of 
continuum defects. 

4. DIFFERENTIAL GEOMETRY OF A CONTINUUM 
CONTAINING LINE DEFECTS 

In continuum mechanics a material body is a three-dimensional 
differentiable manifold M such that there exist global orientation-preserving 
diffeomorphisms K: M--> U c  E 3, where U is a connected subset of the 
three-dimensional Euclidean point space E 3. We call (K, g (M))  a configur- 
ation of M. In order to avoid problems related to the boundary of M, U 
will be taken as an open subset of E 3. Let (K, K(M)) be a certain distin- 
guished configuration, called a reference configuration, and let (x  A) be a 
coordinate system on it. By definition, (u, K(M)) can be covered by such 
a single coordinate system. A deformation of  the body with respect to 
(K, K(M)) is a mapping of  the following form: 

A = ~b o K- l :  K (M)--> ~ ( M )  (14) 

(A, ~ (M))  is called a current configuration with respect to (K, K ( M ) ) .  The 
ordered one-parameter family of  configuration ~ , ,  t ~ I, is called a motion 
of the body, I = [0, 1] being a closed, unit time interval. Two cases concern- 
ing mapping (14) are important: (i) a defect-free current configuration, for 
which A is a diffeomorphism, and (ii) a current configuration with defects, 
for which A is not a diffeomorphism. According to these definitions, defects 
are obstructions to the existence of diffeomorphisms that uniquely character- 
ize current configurations. 

If ( A , ~ ( M ) )  is a defect-free current configuration with respect to 
(K, K ( M ) )  then there exists a coordinate system (x i) on ~b(M) such that 
x i = x i ( x  A) and x A = x A ( x  i) are well-behaved, single-valued, and differenti- 
able functions of their arguments. In that case the matrix F whose entries 
are FiA = OX~/OX A is called the deformation matrix of M with respect to 
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(K, K(M))  and since deformations are orientation preserving, the deter- 
minant of  F is positive. For the sake of simplicity, I assume that ea = a/OX A 

is a global orthonormal vector basis such that the metric and connection 
of  (K,K(M))  a r e  gAB=eA'eB=t~an and t o A B = F A c n d x C = O .  By using 
transformation formulas for the metric and connection, the metric and 
connection of  (A, q t (M))  are 

g i j  = s A i s Bj ~ A B , (D ij = F iA d S a (15) 

or, in matrix form g = 'SgS and to = F dS, where S is in the inverse matrix 
of  F, S F  = FS  = 1, and the superscript t denotes the transpose operation. 
By applying d to g and to, one obtains R = 0  and d g = ' ( g t o ) + ( g t o ) ,  i.e., 
the connection of  (A, ~ ( M ) )  is metric compatible and fiat. As a result, a 
defect-free current configuration is characterized by a global coordinate 
basis e i = dx i and metric compatible fiat connection as 

e i = F A d  A, toJi = F i a  dS A (16) 

I f  these equations are regarded as a set of  differential equations for 
(x i) and (to~.), their integrability conditions are 

" J i ~ i ~ k dei + t o ' j A e J = O ,  ato j - r to  k/xto j = 0  

( r  i=O) (R~=O)  

That is, a global coordinate system (x i) and a metric compatible flat 
connection can be defined on all of  xtr(M) if and only if the torsion and 
curvature are zero at each point of  air(M). In brief, the torsion and curvature 
of  a current configuration must represent, in one way or another, defects 
that are obstructions to the existence of diffeomorphisms from a reference 
configuration to a current configuration. 

I f  the deformation A is not a diffeomorphism, there is not a coordinate 
system in the current configuration which can be connected to (K, K(M))  
by dx i=  FiA dx A. Although one can write e " =  F'~A dx A, F'~A is no longer 
a gradient field, i.e., e ~ is a noncoordinate basis. First of  all, let us suppose 
that in local (x ~) coordinates of  (A, xtr(M)) the connection is still to~ = 
FiA dS A .  Thus, (A, A(M))  will have R~ = 0  and nonvanishing torsion in 
the form T ~ = to j A  dx j, D T  i = 0. Since T i = 0 is the integrability condition 
of  e ~ = ffia dx A, in the case of  a dislocated configuration ( T i ~ 0) the coordin- 
ates are anholonomic.  As a result, a dislocated configuration has a teleparal- 
lel geometric structure characterized by D g  = O, R~ = O, Ti # O. 

Locally, teleparallel geometry can be described by a vanishing connec- 
tion (Kopczyfiski, 1982). In that case torsion corresponds to the object of  
anholonomity,  T ~ =  de '~, where e ~ is an orthonormal basis. In general, a 
global or thonormal  basis may not exist and we may not be able to cover 



14 Vermin 

the dislocated configuration by local coordinates such that in their intersec- 
tion i to j = 0 is always satisfied. 

If  the connection is taken to be a first-order infinitesimal quantity 
(linear approximation), D T  i d T  ~ = 0 gives T ~ = = togA dx i= dfl i. From toij = 

dx  j + ~ dx  j one obtains Fikj dX k and f l i  = fl~ dxJ = w j e j 

de o =�89 + rjk,) dx  k, dw~ = � 89  r ,k,)  dx ~ 

where w~j is the antisymmetric part of the distorsion field flu (in linear 
elasticity theory). These equations give a local interpretation of the connec- 
tion in continuum mechanics. 

If  the only defects present are disclinations, i.e., R~ SO, T ~ =0,  the 
" d S  A connection, but connection of  (A, ~ ( M ) )  cannot be the fiat to j = F'A 

it is the Levi-Civita connection (7a) uniquely determined from the metricity 
condition (4). Thus, disclinated current configurations have a Riemannian 
geometric structure characterized by D g  = O, R ~ = Dto ~ and D R  ~ = O. 

Finally, if both kinds of defects are present, the corresponding 
geometric structure will be a non-Riemannian geometry characterized, in 
addition to the metricity condition, by the Cartan structure equations (la) 
and ( lb)  and the Bianchi identities (2). In linear approximation, the Bianchi 
identities d T  ~= R~iAe j and d R ) =  0 are nothing more than the kinematic 
equations of  defects given by equations (12), provided that the identifications 

"" i k m T j  ~ i j  1 imn j k l n  (17) 
t~.ff ~ E ~t k m  , O ~ E  E I Kk l mn  

are accepted. Thus, the Cartan structure equations and the Bianchi identities 
are natural covariant generalizations of  the definition of defects and the 
kinematic equations of defects, respectively. Consistent with this fact, 
covariant generalization of  the other equations must be given via a minimal 
replacement argument ("comma goes to semicolon" rule); for example, 

' ~ + r ~ J ~  - r ~ i ~ r ' k  = O. crj,~ = 0 must be replaced by crj;~ = or j,; 
Special cases of current configurations and corresponding geometric 

structures are shown in Table I. The hierarchical order of  structures is 
represented schematically by the following diagram: 

( T=O Riemannian R=o ) 
Metric-affine og=o Riemann-Cartan~ g e o m e t r y  ~Euclidean 

geometry geometry ] .=o  \Teleparallel r=olgeometry 
k geometry J 

An important point about this diagram that must be emphasized is that the 
conditions given before a geometry are to be taken as constraints on that 
geometry (Trautman, 1982; Kopczyfiski, 1982). 

Now, the basic mathematical problem of  the internal stresses due to 
line defects has turned out to be a purely geometric problem: find the metric 
and connection for a given torsion and curvature. Because of the covariant 
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Table I. Differential Geometric Structures Corresponding to a 
Continuum Containing Line Defects 

Defect-free configuration Euclidean geometry 
a~  0iJ=0 T i=0, RJj=0 

Dislocated configuration Teleparallel geometry 
a/j,i=0, oiJ=o Ti=de i, dTi=O, R~=0 

Ti=De i, DTi=O, Rij=O 

Disclinated configuration Riemannian geometry 
oliJ=o, oij, i:O TJ=0, DR~=O 

Dislocated and disclinated Riemann-Cartan geometry 
configuration DT i = RijAe j, DRIj = 0 

%,i = ~jkm0k.,, 0'j.~ : 0 

15 

generalization of  the "old  equations," the connection has appeared as a 
new field variable. Note that in this form of the problem the torsion and 
curvature must be given in order to solve the metric and connection. On 
the other hand, the main purpose of the gauge theories of  defects is to 
postulate some field equations of  defects, i.e., some differential equations 
for the torsion and curvature. These equations can be written in terms of 
the metric and connection by using the Cartan structure equations. Follow- 
ing an analogy with gravitational gauge theories, the field equations of  
defects will be given in the next section. 

5. VARIATIONAL P R I N C I P L E  FOR T H E  M E T R I C - T O R S I O N  
GAUGE T H E O R Y  OF T H E  C O N T I N U U M  LINE DEFECTS 

In this section I formulate a variational principle which will give field 
equations of  the continuum line defects. In this formulation, I will follow 
a close analogy with gravitational gauge theories. To open the way to the 
dynamics of  defects, the analysis will be carried out in a dimension- 
independent  manner,  and will be modern in the sense that all calculations 
will be performed in terms of differential forms. 

Let us model a continuum containing line defects by an action integral 
over the body manifold M;  I=SML. The Lagrangian L is an m-form (m 
is the dimension of M)  and it is a function of the field variables g~, cow, 
and their exterior derivatives, i.e., L = L(gij, o~, dgo, dto~j). The statics and 
the dynamics of  defects correspond to m = 3 and m = 4, respectively. To 
facilitate the calculations, or thonormal  bases will be used exclusively. In 
an orthonormal  basis e ", the metric has the form g~o = 8~o and because of 
the metricity condition (4), connection 1-forms are antisymmetric, to~0 = 
-too~. Since in an or thonormal  basis the metric is fixed, the variation of  L 
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with respect to the metric is equivalently accomplished by variation with 
respect to the orthonormal basis 1-forms e% Thus, without any loss of 
generality, we write L = L ( e  '~, w'~t3, de '~, dw'~o), or, by using the Cartan 
structure equations, L = L(e  '~, w'~o, R'~o, T~ Then, the left variation of  L 
with respect to the field variables is defined as 

8 L = S e  ~' A OL l ,~ OL 1 ,~ aL OL 
Oe--~+~ 8oa r3 A O - ~ + 5 8 R  r A O - - - ~ + S T ~  AOT~ 

where OL/Oo/', and OL/OR'~I3 are antisymmetric by definition. Equations 
( la)  and ( lb)  enable us to write OL as 

8 L = - S e  ~ AE~ +�89 A C r  8e ~ A +�89176 0 - - ~ ]  (18) 

where the Einstein ( m -  1)-form E~ and the Cartan ( m -  1)-form C ~  are 

E~ - D (19a) 
0 e  ~ 

OL +2eO A~-~-g+ C ~ r  =0)  (19b) 

I will call the equations of  motion resulting from 0I = SM 0L = 0, i.e., the 
equations 

E~ = 0, Ct~ = 0, a,/3 = 1, 2 , . . . ,  m (20) 

the field equations of the continuum line defects. Since these equations 
are ( m - 1 ) - f o r m  equations, their number is m 2 + r n [ r n ( m - 1 ) / 2 ]  = 
rn2(m + 1 )/2. However, they are not all independent; two basic requirements 
must be satisfied. First, to ensure the independence of equations (20) from 
the choice of the orthonormal basis e ~, L must be invariant under SO(3) 
transformations. Second, L must be invariant under diffeomorphic transfor- 
mations of M, since otherwise L would be position dependent. The second 
requirement means that once line defects are produced by a plastic deforma- 
tion, they must be irremovable by an elastic deformation. 

These two requirements reduce the number of equations (20) from 
m2(m+ 1)/2 to m ( m  2 -  1)/2. To see this, let us take the variations of e ~ 
and oJ~ under an infinitesimal S0(3)  transformation a'~t3(x) = (6'~t~ + e'~t3). 
Using equations (3), we have 8e ~ = ~ - e" = -e~t3e ~ and Swat3 = De'~t3 with 
e~t3 = -et3~. Substitution of  8e '~ and 8w'~t3 into formula (18) leads to 

8 L = L ' - L = e ~ t 3 ( e ~ A E , , - ~ D C  r  ~0---~)  

Since et~r and det~r can be taken to be arbitrary at each point, 8L = 0 gives 

OL 
= O, DC,~t3 = e,~ A Et3 - et~ AE,~ (21) aala/3 
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The first equation means that L cannot contain the connection explicitly. 
The second one expresses the fact that the field equations of defects are 
not all independent and their number is reduced by m ( m -  1)/2. 

To ensure the second requirement, it is enough to take a one-parameter 
family of diiteomorphism q~t and use the Lie derivative with respect to the 
vector field X generated by ~ , .  In that case the following equations are 
obtained: 

~ x ~ ~ ~ (22a) DE~ = T ~e  AE~-~R  ~ne AC 

Oe---(. T~'~xe A OT---ff+~RP~,,e'A OR~-----~- L~ = 0 (22b) 

where ixL=X~L~ (Kopczyfiski, 1982). Equation (22b) is nothing more 
than an equivalent expression of E~, and equation (22a) gives m indepen- 
dent constraints on the possible field equations. So, equations (21) and 
(22a) reduce the number of equations (20) from m2(m + 1)/2 to m(m 2-1) /2 .  
On the other hand, the number of independent field variables is m (rn 2 + 1)/2. 
As a result, a complete specification of the geometric structure of the 
continuum needs m more equations. In other words, there remain m degrees 
of freedom to be gauged. This freedom is called gauge freedom and it is 
specified by a gauge condition. 

Keeping an analogy with the three best-known classical gauge theories 
(Maxwell's electrodynamics, Einstein's theory of general relativity, and 
Yang-Mills theory), only gauge-invariant Lagrangians containing terms up 
to second powers of  curvature and torsion will be investigated. So, following 
this analogy, consideration will be restricted to the following Lagrangians: 

L1(R) = 2LHE = R~A*(e~Ae ~) (23a) 

Lz(R) = f ( Q ) * l  (23b) 

L3(R) = R ~ A * R  ~ (23c) 

LI( T) = T ,A*T  ~ (23d) 

L2( T) = ( e, A T~)A*( e~ A T ~) (23e) 

L3(T) = (e~AT~)A*(e~AT ~) (23f) 

L4(T) = (i,~T'~)A*(i~T ~) (23g) 

L(P) = P~AP ~ (23h) 

L( T, P)= T~AP ~ (23i) 

where LHE is the well-known Hilbert-Einstein Lagrangian and * is the 
Hodge duality mapping. It must be noted that L(T, P) is possible only in 
three dimensions. 
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We have found the formula 

8(toA*fl) = &oA*fl + 8/3A'to - ~e"A[(i.to)A*fl + (-1)p+atoAi=*fl] (24) 

which simplifies the variational calculations, where to and/3 are two arbitrary 
p-forms. For to =/3 we have 

6(/3A*/3) = 26/3A*/3 - 6e~Ar.(/3 ) (25) 
where 

K~(/3) = (i=/3)A*/3 + (-1)P+'/3A(i~*/3) 

is called the stress form. Using formulas (24) and (25), the variations of  
the Lagrangians listed above are calculated, and the resulting field equations 
of  the continuum line defects are given together in Table II. In this table 
the abbreviations 

cr = i~T ~, Z ~ = e~Ao'+ T ~, ~ = e~AT ~ 

are used. The explicit expressions of  the stress forms are 

K~( R ) = ( i~R~v)A* R ~ - RerAi~* R ~v 

K~( T) = ( i~T~)A*T~ - T~ Ai=*T~ 

K=( T A e ) = [  i~( T~ AeV)]A*( TvAea) + T~ AeVAi~*( TvAe~) 

K= (~:) = (i~:)A*~:+ ~:Ai~*~: 

Since L 4 ( T )  = L I ( T ) - L 2 ( T )  and in three dimensions 2L(P)  = 
L3(R)+IQ2*I ,  field equations corresponding to L4(T) and L(P)  are not 
included in Table II. 

Table I I  gives the field equations of  the continuum line defects 
described by the Lagrangians listed above. I claim that each of  these 
Lagrangians, or a linear combination of  them, models a special continuum 
containing line defects. To see this, let us investigate a special linear 
combination of L2(R) and L3(R) in the form of  

L = 1R~A*R"~  + f ( Q ) *  1 (26) 

Table II. Field Equations of the Continuum Line Defects Obtained from t~l = JM 8L = 0 a 

L ~ = 0 ~c ~ = o 
LI(R) R~,~A*(e~Ae~Ae,~) = 0  D*(e~'Ae~)=O 
L2(R) f'R.,aA*(e~'Ae~Ae~)-(Qf'-f)*%=O *(e~Ae~)Adf'+f'D*(e~Ae~)=O 
L3(R) --K~(R) = 0  2D*R ~ =0  
LI(T) -[K~(T)-2D*T,,]=O 2et~A*T~] =0  
L2(T) -[K,~(TAe)-2D*Z=-2T~A*(e~AT~)]=O 2e[~A*Z~] = 0 
L3(T) -[K~(~)-2T~,A*~+2e~AD*r -2e~Ae~A*~:= 0 
L(T, P) DP~-i~(T~'ARt3~nen)=O e[~AP=]-Di["T ~3=0 

"f'= df(Q)/dQ, e[~A*T ~] =�89 ~ - e~A*T=). 
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where we take f (Q)=clQ+c2,  cl and c2 are constants, and *1 is the 
m-dimensional volume element. Making use of Table II gives the corre- 
sponding field equations: 

D* R '~ = -clD*( e'~ Ae ~) (27a) 

clR~,~A*( e'~Ae~ Ae~,) + c2* e~ = 1K~(R) (27b) 

The formal similarity of equation (27a) with the Yang-Mills field equations 
is obvious. However, equation (27b) has no counterpart in those models. 
Since in three dimensions D*(e~'Ae ~) = e'~,T ~', it is interesting to note that 
* T v is playing the role of  a source for curvature in equation (27a) (Dereli 
and Vergin, 1987; Vergin, 1988). 

For c1#0  and c2=�89 2, equations (27a) and (27b) have a 
curvature solution as 

R,~ = -cle,~Ae~ (28) 

This solution represents a space of constant curvature, which plays an 
important role in the general theory of relativity. The metric and the 
connection of such a space are well known (Thirring, 1979). 

The Bianchi identities and the solution (28) show that the torsion 
satisfies the equation DT '~ = 0, or it is zero. Thus, the Lagrangian 

[ - m ( m - 1 )  c2], 1 L=�89 +Lc, Q+ ~ (29) 
. J  

has the solutions 

(i) R ~  = -cle~Ae~, DR,~ = 0, T~ = 0 (30a) 

(ii) R,~ =-cle,~Ae~, DR,~ =O, Tc, ~ O, DT,~ =O (30b) 

In three dimensions, the solution (30a) describes a continuum containing 
only disclinations. The second solution corresponds to a continuum contain- 
ing both kinds of  defects, which, in the linear approximation, form closed 
loops separately, without ending on each other. 

6. CONCLUSION 

In this paper the basic points underlying the geometrization of the 
continuum defects are discussed and a gauge model for them is formulated 
in analogy with gauge theories of gravitation rather than the Yang-Mills 
gauge theories of high-energy physics. The metric and metric compatible 
connection are the basic field variables of  the metric-torsion gauge theory. 
Gauge-invariant Lagrangians containing torsion and curvature terms up to 
the second power are constructed and their equations of motion are 
obtained. 
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For the sake of clarity, a special Lagrangian is considered and corre- 
sponding field equations are compared with the Yang-Mills-type gauge 
models. It has been shown that the solutions of  these equations correspond 
to a continuum containing line defects, which, in linear approximation,  can 
be interpreted as forming closed loops separately. 

It is possible to study the other field equations, or some linear combina- 
tions of  them. Moreover, one can construct some gauge-invariant 
Lagrangians containing higher order terms of the torsion and curvature. 
But, at this level, this will not contribute to a better understanding of the 
present approach.  

Since the formulation is carried out in terms of differential forms, most 
of  the equations are written in an arbitrary dimension. This gives the 
opportunity to study the dynamics of defects. At this point we encounter 
two difficulties: (i) the identification of the space-time components of  torsion 
and curvature, and (ii) the construction of  a four-dimensional metric. 
Although the identification of the mixed components  with defect currents 
seems the most plausible solution, this point needs to be discussed further. 
Concerning the second difficulty, Giinther (1983) and Leinkauf (1989) 
deserve credit for opening the study of a complete geometrization. In their 
work the speed of sound, which enters a wave equation obtained from the 
defect equations, is taken as a fundamental  kinematic constant like the 
speed of light in the theory of  relativity. The four-dimensional non-Rieman- 
nian space so constructed is called "sound space time." On the other hand, 
this approach has some problems, such as the existence of more than one 
sound velocity. When these difficulties are overcome, the present formula- 
tion can be extended easily for the dynamics of  defects. 
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